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Free-boundary problems describing two-dimensional pulse recycling
and motion in semiconductors
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An asymptotic analysis of the Gunn effect in two-dimensional samples of bulkn GaAs with circular contacts
is presented. A moving pulse far from contacts is approximated by a moving free boundary separating regions
where the electric potential solves a Laplace equation with subsidiary boundary conditions. The dynamical
condition for the motion of the free boundary is a Hamilton-Jacobi equation. We obtain the exact solution of
the free-boundary problem~FBP! in simple one-dimensional and axisymmetric geometries. The solution of the
FBP is obtained numerically in the general case and compared with the numerical solution of the full system
of equations. The agreement is excellent so that the FBP can be adopted as the basis for an asymptotic study
of the multidimensional Gunn effect.
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I. INTRODUCTION

Excitable media exhibit a large response to a sufficien
strong disturbance from their only stable stationary homo
neous state. This feature makes them ideally suited to su
propagation of pulses or wave trains@1#. Examples are the
propagation of an action potential along the axon of a ne
@2#, the propagation of a grass fire on a prairie, pulse pro
gation through cardiac cells@2#, and reaction-diffusion@3# or
ecological systems@1#. Semiconductor systems displayin
negative differential resistivity in their current-field chara
teristics are also excitable systems, albeit they have pec
features due to the long range character of the electrom
netic interaction@4#. Thus, dc voltage bias conditions lead
pulse recycling~at contacts! and motion that give rise to
self-sustained oscillations of the electric current, the
called Gunn effect@5#. While most of the theoretical an
experimental studies of these phenomena deal with o
dimensional geometries of samples with attached planar
tacts, recent experiments@6# and numerical studies@7,8# have
considered rectangular samples with point contacts. In
case, many unusual oscillatory patterns are found@7,8#.

A large part of the literature on pulse propagation is d
voted to the mathematical description of their motion on o
dimensional unbounded domains. In the case of s
oscillations in semiconductor systems, such a descriptio
the basis of asymptotic analyses of pulse recycling and
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tion, both in one-dimensional~1D! @9,10# or axisymmetric
two-dimensional~2D! samples@7,11#. These studies exploi
the fact that the electric field has only one relevant com
nent whose integral yields the voltage difference betwe
contacts. The situation is very different in more general
ometries and new ideas need to be brought in. In this pa
we reduce pulse propagation~far from contacts! to the mo-
tion of a free-boundary~FB! separating regions where th
electric potential is a harmonic function. The FB obeys
Hamilton-Jacobi equation~HJE!. On the FB, continuity and
jump conditions hold, and additional conditions on conta
and sample boundaries are needed for the problem of fin
the FB ~free-boundary problem or FBP! to have a unique
solution. On simple 1D and axisymmetric geometries,
HJE can be solved exacly. Its solution describes very w
the motion of a discontinuity of the electric potential repr
senting the pulse far from the boundaries, as compari
with the numerical solution of the full system of differenti
equations shows. This is also true of the general 2D case
now the solution of the FBP has to be obtained numerica
In all cases, recycling and annihilation of pulses at conta
have to be described separately from the FB motion.

The rest of the paper is organized as follows. In Sec.
we present the governing equations of the Kroemer mo
for the Gunn effect in two-dimensional samples ofn GaAs.
An asymptotic derivation of the FBP is given in Sec. I
Section IV contains the exact solutions of the FBP in the
and axisymmetric cases. Numerical solutions of the FBP
the general 2D case and comparisons with the numerica
lution of the full system of equations are presented in Sec
The Sec. IV contains our conclusions.

II. EQUATIONS AND BOUNDARY CONDITIONS

The Kroemer model@12# consists of the following equa
tions and boundary conditions~in dimensionless units! for

s
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the concentration of free carriers~electrons!, n, and the elec-
tric potentialw:

]n

]t
1¹W •~nvW 2d¹W n!50, ~1!

¹2w5n21, ~2!

vW ~EW !5EW
11vsE

3

11E4
, ~3!

xWPSc :EW •NW 5r~nvW 2d¹W n!•NW and w50, ~4!

xWPSa :EW •NW 5r~nvW 2d¹W n!•NW and w5F, ~5!

xWPSo :EW •NW 50 and ~nvW 2d¹W n!•NW 50. ~6!

Here Eqs.~1! and ~2! are the charge continuity and Poiss
equations, respectively. The dimensionless electric field
EW 5¹W w andE5uEW u. In these equations, the electron dens
has been scaled with the uniform concentration of donor
purities in the semiconductor,ND51015 cm23, and the elec-
tric field with the field characterizing the intervalley transf
responsible for the negative differential mobility involved
the Gunn oscillation,ER53.1 kV/cm. Distances and time
have been measured with the dielectric length and the die
tric relaxation time, l 15eER /(eND)'0.276mm,
l 1 /(m0ER)'1.02 ps, respectively (m0 is the zero-field elec-
tron mobility; see, e.g., Ref.@9# for details!. The unit of
electric potential isERl 1'0.011 V. The carrier drift velocity
of Eq. ~3!, vW (EW ), is already written in dimensionless unit
and it has been depicted in Fig. 1 of Ref.@7#. We assume tha
the diffusion coefficient is constant,d'0.013 ~at 20 K!. In
the rest of the paper, we assume also a zero saturation v
ity vs50.

Boundary and bias conditions need to be imposed at
interfaces between semiconductor and contacts,Sc,a , and on
the outer boundary of the semiconductor boundarySo . Our
boundary conditions~4! and~5! assume that the normal com
ponents of electron current density and electric field are p
portional at the semiconductor-contact boundary~Ohm’s
law! @9#, ~in these equations,NW is the unit normal toSc,a ,
directed towards the semiconductor!. For simplicity, we
choose all contact resistivitiesr to be equal. Bias condition
are chosen to bew50 at the cathodeSc ~injecting contact!
and w5F ~the applied voltage! at the anodeSa ~receiving
contact!. If part of the semiconductor boundary does n
have attached contacts, the corresponding boundary co
tions are zero flux ones, as in Eq.~6!. Typically d.0 is very
small, so that diffusion matters only inside boundary lay
near the contacts or inside thin shock waves@9,10#. The latter
are charge accumulations that will be treated simply as
continuities of the electric field@9#. Thus, diffusion effects
may be left out of the conservation equation~1! when inter-
preting the results. If we setd50, the first boundary condi
tion in Eq. ~5! and the second one in Eq.~6! should be
omitted.
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We can write an Ampe`re’s equation for the total curren
density ~electronic plus displacement! jW by eliminating n
from Eq. ~1! using Eq.~2!:

¹W • jW50,

with

jW5~11¹2w!vW 2d¹W ~¹2w!1
]EW

]t
. ~7!

III. DERIVATION OF THE FREE-BOUNDARY PROBLEM

Let us consider a rectangular sample with circular co
tacts whose radiir c are large but much smaller than th
distance between contacts, 1<r c!L. The current density
varies slowly and follows adiabatically the electric field pr
files in the semiconductor except during brief periods
which new pulses are shed from the cathodes. Close
cathode located at the origin, the electric field and the curr
density are approximately axisymmetric and we can use
results of Ref.@11#. jW5JrW/r 2, and r 5urWu, EW 5E1(J/r )rW/r .
E1( j ) andE2( j ), with E1,E2, are the two positive zeros o
the functionv(E)2 j , with v(E)5uvW (EW )u. The maximum
value of u jWu during self-oscillations is somewhat larger tha
j c5O(1) at whichE2( j )5r j . Correspondingly, the maxi
mum value ofJ is Jc5 j cr c5O(r c) and far from the cathode
r @r c , J!r holds. This means thatE;E1(J/r )'J/r !1
andv(E)'E.

When vs50, the pulses move slowly over large regio
of the sample in which the field is stationary and small,E
!1. Notice that v(E)5E2E5/(11E4), which implies
v(E) to be approximately linear on a wide range of fie
values,E5!1. We conclude thatv(E)'E except near the
contacts and inside pulses. In these outer regions, space
time derivatives can be neglected in Eq.~7!, which implies
jW'vW (EW )'EW there. Thus, divjW50 yields ¹2w50 and the
electric potentialw is a harmonic function outside pulses an
contact regions:

¹2w50. ~8!

Let us now consider the pulse interior. A pulse is a narr
region of high electric field bounded by a leading front and
trailing front which is a shock wave. Outside the pulseE
!1 as explained before. The leading front is a region
which n511¹W •EW '0. Since we are describing the pulse f
from the contacts,r @r c@1, the electric field is essentially
normal to the pulse,NW . ThenEN5EW •NW 'r w(t)2r , wherer
measures displacement along the normal to the front
r w(t) yields the front location. The velocity of the leadin
front is drw /dt5 j N5 jW•NW , according to Eq.~7!. The back of
a triangular pulse of height (E12E2) ~the trailing front! is a
shock wave with speed given by the equal area rule@11#,

V~E1 ,E2!5
1

E12E2
E

E2

E1

v~E!dE;
p

4E1
, ~9!
2-2
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where we have used thatE2;E1 @13# asE1@1. Then the
trailing front velocity is small and small waves move fas
than large ones. A key observation is that the pulse isnarrow
and it can be substituted by a curve on a length scale of
order of the distance between contacts,L. This is clear if
leading and trailing fronts of the pulse are circular@11#. Then
the biasF5O(L) is the integral of the electric field from th
cathode to the anode and the pulse width~equal to its height!
is (E12E2)5O(AF)!F. In the general case, the puls
are circular during a large part of their lives@7# and we shall
assume that their widths remain much smaller thanL even
when their shapes are no longer circular. Then we ass
that the pulses are curvesG given by the equation

W~xW ,t !50. ~10!

Clearly, there is a finite voltage drop across the pu
;E1

2 /25O(F), which means that the electric potential h
a jump discontinuity atG:

E1
2

2
5@w#[w12w2 . ~11!

Here, w2 and w1 are the limiting values ofw as xW ap-
proachesG from the region inside or outsideG, respectively.
The relations divjW50 and jW'EW imply that the normal com-
ponent of the electric field~and therefore the normal deriva
tive of the electric potential! is continuous acrossG:

j N5~NW •¹W w!15~NW •¹W w!2 . ~12!

This j N is also the velocity of the leading front of th
pulse along its normal, which is nearly equal to that of t
trailing front, V given by Eq.~9!, during most of the pulse
lifetime. The pulse velocity can also be obtained by diff
entiating Eq.~10! with respect to time,

]W

]t
1¹W W•

dxW

dt
50.

Since NW 5¹W W/u¹W Wu, the normal component of the puls
velocity j N is

dxW

dt
•NW 52

1

u¹W Wu

]W

]t
. ~13!

Using Eqs.~9!, j N5V, and~13!, we obtain the following
equation for the position of the FBG:

2
]W

]t
5

pu¹W Wu

4A2@w#
on W~xW ,t !50. ~14!

Thus we have posed the following FBP:
The electric potentialw(xW ,t) is a harmonic function in-

side and outside the FBG, with boundary conditions (4), (5)
and (6) on the semiconductor boundaries. On the FBG,
implicitly given by W(xW ,t)50, w has a jump discontinuity
@w# and its normal derivative satisfies
03620
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~NW •¹W w!15
p

4A2@w#
5~NW •¹W w!2 ,

where NW 5¹W W/u¹W Wu. Furthermore, the FB obeys the follow
ing HJE:

2
]W

]t
5

pu¹W Wu

4A2@w#
on W50.

The conditions on the normal derivative of the elect
potential at the FB are equivalent to

~¹W w•¹W W!15
pu¹W Wu

4A2@w#
5~¹W w•¹W W!2

on W50.
The HJE~14! can be solved by the method of characte

istics ~the Hamilton equations!. To derive them, we just take
a partial derivative of the HJE with respect tox, and a partial
derivative with respect toy. The results are

]

]t

]W

]x
1

p

4u¹W WuA2@w#
S ]W

]x

]2W

]x2 1
]W

]y

]2W

]x]yD
5

p

8A2@w#3

]@w#

]x
u¹W Wu,

and a similar equation for]W/]y. The corresponding char
acteristic equations for these first-order quasilinear par
differential equations forp5]W/]x andq5]W/]y are

dx

dt
5

p

4A2@w#

Ap21q2
p,

dy

dt
5

p

4A2@w#

Ap21q2
q,

dp

dt
52

p

8A2@w#3

]@w#

]s
q,

dq

dt
5

p

8A2@w#3

]@w#

]s
p,

dW

dt
50.

In these equations,s is arc length on the FBG, and we have
used that]@w#/]x52q(]@w#/]s)/Ap21q2 and ]@w#/]y
5p(]@w#/]s)/Ap21q2 on G. These expressions can b
straightforwardly derived by using a local coordinate syst
on G with basis vectors NW 5¹W W/u¹W Wu and TW

5(2]W/]y,]W/]x)/u¹W Wu. The jump@w# depends only on
2-3
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the arc length onG and t because it is defined only fo

(x,y)PG @these (x,y)PG have zero projection ontoNW ]. The
last equation forW follows from the chain rule, the Hamilton
equations forx andy, and the HJE:

dW

dt
5

]W

]t
1

]W

]x

dx

dt
1

]W

]y

dy

dt
5

]W

]t
1

pu¹W Wu

4A2@w#
50.

The characteristic equations can be used to findW(x,y,t)
given an initial conditionW(x0 ,y0,0)5W0(x0 ,y0) such that
the FB is described initially byW0(x0 ,y0)50. Let us as-
sume that@w# is a known function ofs andt. In principle, we
can find the solutions of the above equations with initial d
x5x0 , y5y0 , p5]W0 /]x0 andq5]W0 /]y0. The result is
a two-parameter family of solutionsx5X(t;x0 ,y0), y
5Y(t;x0 ,y0). Let us assume that we can invert this tran
formation for eacht.0 ~which should be true fort suffi-
ciently small!, x05j(x,y,t), y05h(x,y,t). The solution of
the HJE isW(x,y,t)5W0„j(x,y,t),h(x,y,t)… becauseW is
constant over the characteristics. OnceW is found for a given
@w#, the Laplace equation can be solved for the electric
tential in the different regions of the sample separated by
FB W50. Inserting these solutions in the definition of th
jump @w#, we find an equation for this jump. It seems cle
that we can implement this procedure numerically to dev
an explicit method such thatW and@w# are calculated at time
t1Dt knowing their values at timet. In particular, we do not
need to find (x0 ,y0) in terms of (x,y,t). All we need to
know is the instantaneous location of the FBW50, thus, we
only need to know the evolution of those (x0 ,y0) that are on
W050. For eacht.0, the locus of suchx5X(t;x0 ,y0), y
5Y(t;x0 ,y0) constitutes the FB. More details on the nume
cal implementation of these ideas are given in Sec. V.

The FBP describes the motion of a pulse far from conta
and other boundaries or pulses. To obtain a comp
asymptotic description of the Gunn self-oscillations, we ha
to supplement its solution with a local description of the fie
near the contacts and boundaries and a description of p
collisions. In particular, new pulses are shed from the ca
odes as the normal component of the current density th
surpasses a critical valuej c which is the same as in th
axisymmetric case@11#. There are cases in which two puls
collide and merge and cases in which a pulse splits@7#. In
these cases, our construction of the moving FB breaks do
What do we do then? Consider, for instance, two circu
pulses that become tangent at a point (x1 ,y1) at time t1
.0. Clearly, there are two different initial points (x0 ,y0)
that have evolved towards (x1 ,y1) and W(x,y,t) is no
longer single-valued. Numerical simulations of the compl
system of equations show that the two pulses merge
adopt an 8-shaped form; see Fig. 7 of Ref.@7#. To mimic this
situation with our FBP, we should stop the simulations a
start with a new FB att5t1, that is, an 8-shaped simpl
curve with a hole at the tangent point of the two old puls
The new FBP should now have a unique solution.
03620
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IV. EXACT SOLUTIONS OF THE FREE-BOUNDARY
PROBLEM IN SIMPLE GEOMETRIES

There are two simple geometries in which the FBP can
solved exactly: parallel planar contacts attached at the e
of a rectangular sample~1D case! and the Corbino geometry
of two concentric circular contacts with the sample in b
tween~axisymmetric case!. Let us call region A the one com
prising the cathode and region B the one comprising
anode.

A. 1D geometry

Then the electric potential depends only on the coordin
x, the cathode is located atx50, the anode atx5L, and the
FB is a moving pointxs(t). The electric potential obeys

]2wA

]x2 50 in ~0,xs!, wA~0,t !50,
]wA

]x
~xs ,t !5

p

4A2@w#
,

]2wB

]x2 50 in ~xs ,L !, wB~L,t !5F,

]wB

]x
~xs ,t !5

p

4A2@w#
.

The solutions are

wA~x,t !5
p

4A2@w#
x,

wB~x,t !5
p

4A2@w#
~x2L !1F.

The jump in the potential,@w#5wB(xs ,t)2wA(xs ,t) is in-
dependent oft andxs , and it solves the following equation

@w#5F2
p

4A2@w#
L.

Settinga5A@w# andf5F/L, we obtain

a35S fa2
p

4A2
D L. ~15!

Depending on the values off andL this equation may have
zero, one, or two positive solutions. If there are two so
tions, an argument due to Volkov and Kogan@14# shows that
the pulse with smaller@w# is unstable. The FBxs(t) can be
found by solving the dynamical HJE:

2
]W

]t
5

p

4A2@w#
U]W

]x U.
Let us assume that the initial profileW(x,0)5W0(x) is mo-
notonously increasing and that it vanishes at a posit
xs(0)P(0,L) corresponding to the pulse location at timet
2-4
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50. For small enought, we then have]W/]x.0 and we can
ignore the absolute value in the previous equation. Its s
tion is then

W~x,t !5W0S x2
pt

4A2@w#
D .

Notice that we have]W/]x.0 for all t.0. SinceW(xs ,t)
50, the previous solution yields

xs~ t !5xs~0!1
p

4A2@w#
t. ~16!

Figure 1 compareswA(x,t) and wB(x,t) to the electric
potential of an advancing pulse calculated by numerica
solving the exact system of equations.

The FBP has yielded the same approximation to the c
plete 1D problem as indicated in Ref.@9# for the motion of a
pulse far from the boundaries. When the pulse arrives at
anodex5L, it starts disappearing there and the current d
sity increases until it surpassesj c . Then a new pulse is she
at x50; see Ref.@9# for details.

B. Corbino geometry „axisymmetric case…

The potential depends only on the radiusr measured from
the center of the cathode. Solving the Laplace equa
]@r ]w/]r #/]r 50 at both sides of the moving pulse of r
dius r s(t), we find

wA~r ,t !5
p r s

4A2@w#
lnS r

r c
D ,

wB~r ,t !5
p r s

4A2@w#
lnS r

r c1L D1F.

The jump in the electric potential atr s is now given by the
following equation:

FIG. 1. The solid lines indicate the electric potential and field
an advancing 1D pulse~far from the contacts! calculated by numeri-
cally solving the Kroemer model. They agree very well with t
approximationswA(x,t) andwB(x,t) ~dashed lines!. We have used
the nondimensional units defined in the text.
03620
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@w#5F2
pr s

4A2@w#
lnS r c1L

r c
D ,

or equivalently

a35Fa2
p

4A2
lnS r c1L

r c
D r s ~17!

for a5A@w#. Notice thatr s explicitly appears in these equa
tions and that@w# decreases as the pulse advances~and
thereforer s increases!; cf. Ref. @11#. The HJE can be solved
as in the 1D case and its solution yields

r s~ t !5r s~0!1
p

4A2
E

0

t

@w#21/2dt. ~18!

In this case, Eqs.~17! and~18! for @w# andr s(t) need to be
solved simultaneously.

The stage of a self-oscillation described by the previo
FBP corresponds to having a single pulse far from the c
tacts. See Ref.@11# for a full description of self-oscillations
in this case.

V. NUMERICAL RESULTS

To test our FBP formulation, we shall consider the re
tively complicated geometry of Fig. 7 in Ref.@7# ~reproduced
here as Fig. 2 to facilitate comparison with the results
numerically solving the FBP! corresponding tovs50. The
sample is a square of sidel 520 with two cathodes at poten
tial w50 and two anodes withw510. The circular contacts
~of radii 0.5! are at the vertices of a square of sided54
located at the center of the sample. Then the separation
tween contacts isL53 and the distance from contacts to th
border of the sample is 7.5. Notice that dipole waves
emitted from the cathodes. Immediately after their emissi
the waves are circular. As they approach each other,

f FIG. 2. Density plots of the solution of the Kroemer’s mod
~with vs50) in a square of sidel 520 with four circular contacts
forming the vertices of a square of sided54 located at the center o
the sample. Cathodes have potentialw50 and anodes havew
510. Our dimensionless units have been defined in Sec. II.
2-5
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waves become elongated and merge forming an 8-sha
connected curve that grows until it reaches the anodes.

A. Free-boundary problem

We shall now explain the results obtained by solving n
merically the FBP. Details of the numerical method will b
given later. Figure 3 shows the evolution of the FB sepa
ing the two regions of the sample, inside and outside
boundary. Notice that the numerical solution of the F
closely resembles the numerical solution of the full Kroem
model depicted in Fig. 2. In the two first frames of Fig. 3, t
FB consists of two circumferences corresponding to the
pole waves nucleated at the cathodes. In the third frame
curves collide and then merge forming an 8-shaped clo
curve as shown in the remaining frames of Fig. 3. Figur
shows the electric potential distribution in each region~in-
side and outside the FB! corresponding to the last frame o
Fig. 3.

By using Eq.~9!, we see that each point of the FB mov
with velocity

FIG. 3. Time evolution of the FB~black curve! separating the
two regions of the sample, inside~clear gray! and outside~dark
gray! the boundary. The anodes appear in white.

FIG. 4. 3D plot of the electric potential surfaceswA(x,y,t)
~lower surface, inside the FB! andwB(x,y,t) ~upper surface, outside
the FB! at the time corresponding to the last frame of Fig. 3. O
dimensionless units have been defined in Sec. II.
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Figure 5 depicts the velocity of the points at the FB in t
last frame of Fig. 3. The curve is symmetric and Fig. 5 sho
that the FB moves faster at the points located in the l
upper and right-lower corners of the sample, in agreem
with the numerical solution of the Kroemer model.

Let t1 be the time at which two dipole waves created
the cathodes touch at a point~as in the third frame of Fig. 3!,
counted from the time at which dipole waves are emitted
the cathodes (t50). The velocity of the points at the FB i
shown at three different times in Figs. 6 (0,t,t1) and Fig.
7 (t.t1). Notice that the velocity of the points near th
center of the sample in Fig. 6 is larger than in neighbor
points, which explains the elongated form of the dipo
waves in the numerical solution of the Kroemer model~see
the third and fourth images of Fig. 2!. In Fig. 7 we observe
that the largest velocity is reached at the outer points of
single FB, also in agreement with the numerical solution
the full model equations.

r

FIG. 5. Dimensionless velocity of each point of the FB at t
dimensionless time corresponding to the last frame in Fig. 3
calculated from the electric potential distribution showed in Fig.

FIG. 6. Time evolution~from bottom to top! of the velocity of
the FB G when t,t1, where the topology is composed of thre
domains andG is made of two circumferences. Our dimensionle
units have been defined in Sec. II.
2-6
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B. Numerical solution of the free-boundary problem

To solve numerically the FBP, we should solve the par
differential equation governing the time evolution of the F
taking into account that the velocity thereof is determined
the solution of Laplace’s equation with Neumann bound
conditions on the FB and Dirichlet boundary conditions
the contacts~the electric potential problem, or, briefly, th
EPP!.

At each time step, the FB advances at a constant velo
for a short distance from its previous position.~Thus we
ignore the velocity variation during the short time interv
betweent i andt i1Dt.) At time t i1Dt, we solve the EPP in
the different domains resulting from the new location of t
FB. This yields the electric potential distribution that is us
to calculate the velocity of the FB at the next time step.

The time evolution of the free-boundary is calculated
using the so-called fast marching method~a special case o
the method of level sets!. This method was introduced b
Sethian in 1996@15# and used in a wide variety of applica
tions @16–18#. Level sets methods are very efficient for sol
ing complex problems of evolving interfaces whose topolo
may change. If the velocity of the interface does not cha
sign, the fast marching method is a very fast algorithm
deed.

The general version of the method of level sets consist
solving the evolution equation

]W

]t
1Fu¹W Wu50, ~19!

where W(xW ,t) is a function such thatW50 describes the
free-boundary moving at velocityF; cf. Eq. ~14!. When the
sign ofF does not change, the FB either expands or contr
uniformly as time elapses. In our case, the FB moves a
from the cathodes. Then the zero-level setW50 comprises
the points farthest from the cathodes that have been trave
once by the FB at a given instant of time. Then we can de
an arrival time function T in the whole sample:T(xW ) is the
time taken by the FB to arrive at the pointxW starting from a

FIG. 7. Time evolution~from bottom to top! of the velocity of
the FB G when t.t1. The topology is now composed of two do
mains.
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given initial configuration. To find an equation forT, we take
the gradient ofW„xW ,T(xW )…50, ¹W W1Wt¹W T50, and use Eq.
~19! to obtain

¹W W2Fu¹W Wu¹W T50. ~20!

This equation implies that¹W W and¹W T are collinear vectors
and their lengths are related byu¹W Wu5Fu¹W Wuu¹W Tu. Then
we obtain the following eikonal equation forT:

u¹W T~xW !u5
1

F~xW !
[

4A2@w#

p
. ~21!

The velocityF as a function ofxW is evaluated at timet. Once
the solution of Eq.~21! is known at a narrow band about th
instantaneous location of the FB at timet, the location
thereof at timet1Dt is found by solvingT(xW )5t1Dt.

The fast marching method consists of solving numerica
this equation by using upwind finite differences to appro
mateu¹W Tu. In particular, we have used the Godunov sche

maxS Ti , j2Ti 21,j

Dx
,
Ti , j2Ti 11,j

Dx
,0D 2

1maxS Ti , j2Ti , j 21

Dy
,
Ti , j2Ti , j 11

Dy
,0D 2

5
1

Fi , j
2

.

~22!

This choice ensures that the information is always tak
from where the solution is already known. The fast march
method is consistent with the Huygens principle even wh
two waves collide and adopt an 8-shaped curve as in Fig
or with even more complex topologies. The EPP is solved
using an integral equation method based upon Green’s
mula. This yields the solutionw within a region for a given
value of its normal derivative at each point of the bounda
To make sure that the nonlinear boundary conditions at
FB hold, we implement an iterative process.

We shall start our simulation from an initial configuratio
as depicted in Fig. 8. There two waves have been nucle
at the cathodes and have reached their typical circular fo
The FB consists of two circumferences that divide t

FIG. 8. The FB comprises two separate curves defining th
regions.
2-7
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sample in three regions,A1 , A2, andB, in which we should
simultaneously solve the EPP. Implementing the fast ma
ing method, we see two waves growing from the initial c
cumferences until a timet1, when they meet at the center o
the sample. Then the FB is a connected curve and we h
the situation depicted in Fig. 9, where there are only t
regionsA and B. The algorithm detects the timet1, adapts
itself immediately to the new configuration similar to Fig.
and it continues solving the FBP.

The accuracy and convergence of the method have b
successfully checked by decreasing the mesh size. The c
putational cost of the method is very low as compared to
computational and memory effort required by the resolut
of the full Kroemer model. The order-one fast marchi
method solves the eikonal equation in the whole sample w
O(N ln N) operations, whereN is the size of the mesh, bu

FIG. 9. The FB is a single curve defining two regions.
ce
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we only need to solve the Eikonal equation in a narrow ba
ahead of the FB at each time step. On the other hand,
EPP solver carries outO(N21M ) operations, whereM is the
number of points defining the FB~at most of orderN).

VI. CONCLUSIONS

We have studied Gunn oscillations in 2D rectangu
samples ofn-GaAs with circular contacts by solving th
Kroemer drift-diffusion model with appropriate bounda
and initial conditions. By using singular perturbation met
ods, the motion of dipole waves in semiconductor samp
has been reduced to solving a free-boundary problem. E
solutions of this problem have been found in simple 1D a
axisymmetrical~Corbino! geometries. In the general cas
the free-boundary is numerically found by means of the f
marching method which is a special case of the method
level sets. The great reduction in computational cost allow
by using this method as an alternative to solving the f
Kroemer model would enable us to study much larg
samples.
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