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An asymptotic analysis of the Gunn effect in two-dimensional samples ofrbGl#As with circular contacts
is presented. A moving pulse far from contacts is approximated by a moving free boundary separating regions
where the electric potential solves a Laplace equation with subsidiary boundary conditions. The dynamical
condition for the motion of the free boundary is a Hamilton-Jacobi equation. We obtain the exact solution of
the free-boundary problei#BP) in simple one-dimensional and axisymmetric geometries. The solution of the
FBP is obtained numerically in the general case and compared with the numerical solution of the full system
of equations. The agreement is excellent so that the FBP can be adopted as the basis for an asymptotic study
of the multidimensional Gunn effect.
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[. INTRODUCTION tion, both in one-dimensiondflD) [9,10] or axisymmetric
two-dimensional2D) sampleg7,11]. These studies exploit
Excitable media exhibit a large response to a sufficientlythe fact that the electric field has only one relevant compo-
strong disturbance from their only stable stationary homogenent whose integral yields the voltage difference between
neous state. This feature makes them ideally suited to sustafiPntacts. The situation is very different in more general ge-
propagation of pulses or wave traifs]. Examples are the Ometries and new ideas need to be brought in. In this paper,
propagation of an action potential along the axon of a nerv&/e reduce pulse propagatigfar from contactsto the mo-
[2], the propagation of a grass fire on a prairie, pulse propalion Of @ free-boundaryFB) separating regions where the
gation through cardiac cel[€], and reaction-diffusiof3] or electric potential is a harmonic function. The FB obeys a
ecological systems$l]. Semiconductor systems displaying Hamilton-Jacobi equatiotHJB). On the FB, continuity and
negative differential resistivity in their current-field charac-4MP conditions hold, and additional conditions on contacts

netic interactiorf4]. Thus, dc voltage bias conditions lead to HJE caﬁ be solved exacly. Its solution describes very, well

pulse recycling(at contacts and motion that give rise t0 e motion of a discontinuity of the electric potential repre-
self-sustained oscnlatlons_ of the electric curren.t, the SOzenting the pulse far from the boundaries, as comparison
called Gunn effec{5]. While most of the theoretical and jth the numerical solution of the full system of differential
experimental studies of these phenomena deal with onexquations shows. This is also true of the general 2D case, but
dimensional geometries of samples with attached planar comow the solution of the FBP has to be obtained numerically.
tacts, recent experimer(t§] and numerical studigg,8] have  In all cases, recycling and annihilation of pulses at contacts
considered rectangular samples with point contacts. In thihave to be described separately from the FB motion.
case, many unusual oscillatory patterns are fouhé]. The rest of the paper is organized as follows. In Sec. lI,
A large part of the literature on pulse propagation is de-we present the governing equations of the Kroemer model
voted to the mathematical description of their motion on onefor the Gunn effect in two-dimensional samplesnoGaAs.
dimensional unbounded domains. In the case of selfAn asymptotic derivation of the FBP is given in Sec. llI.
oscillations in semiconductor systems, such a description i§ection IV contains the exact solutions of the FBP in the 1D
the basis of asymptotic ana|yses of pu|se recyc"ng and mcﬁnd aXlsymmet”C cases. Numerical solutions of the FBP in
the general 2D case and comparisons with the numerical so-
lution of the full system of equations are presented in Sec. V.

*Also at Unidad Asociada al Instituto de Ciencia de MaterialesThe Sec. IV contains our conclusions.

(CSIC), 28049 Cantoblanco, Spain.

Email address: bonilla@ing.uc3m.es
"Email address: escobedo@math.uc3m.es The Kroemer mode12] consists of the following equa-
*Email address: higuera@dmt.upm.es tions and boundary conditiongn dimensionless unijsfor

1. EQUATIONS AND BOUNDARY CONDITIONS
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the concentration of free carriefslectron$, n, and the elec-
tric potential ¢:

on . N
E+V~(nv—6Vn)=0, (1)
VZp=n-—1, 2
E) E1+USE3 -

U = 1

1+E*
ieEC:E~N=p(nJ—6ﬁn)-N and ¢=0, (4
xe3,:E-N=p(nv—48Vn)-N and ¢=®, (5
Xe3,:E-N=0 and (nv—4&Vn)-N=0.  (6)
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We can write an Ampe’s equation for the total current
density (electronic plus displaceme)nf by eliminating n
from Eq. (1) using Eq.(2):

>

6.]:0’

with

. .. JE
=(1+V2p)v—6V(V3p)+ e (7)

IIl. DERIVATION OF THE FREE-BOUNDARY PROBLEM

Let us consider a rectangular sample with circular con-
tacts whose radir. are large but much smaller than the
distance between contacts=<it.<L. The current density
varies slowly and follows adiabatically the electric field pro-
files in the semiconductor except during brief periods in

Here Eqs(1) and(2) are the charge continuity and Poisson which new pulses are shed from the cathodes. Close to a
equations, respectively. The dimensionless electric field isathode located at the origin, the electric field and the current
E=V¢ andE=|E|. In these equations, the electron densitydensity are approximately axisymmetric and we can use the
has been scaled with the uniform concentration of donor im#esults of Ref[11]. j=Jr/r?, andr=|r|, E=E(J/r)r/r.
purities in the semiconductap=10'® cm™2, and the elec- E;(j) andE,(j), with E;<E,, are the two positive zeros of
tric field with the field characterizing the intervalley transfer the functionv(E)—j, with v(E)=|5(E)|. The maximum

responsible for the negative differential mobility involved in | 41,e of|j| during self-oscillations is somewhat larger than

the Gunn oscillationEg=3.1 kV/cm. Distances and times j.=0(1) at whichE,(j)=pj. Correspondingly, the maxi-

have been measured with the dielectric length and the diele¢;, m value of) is J.= .= O(r.) and far from the cathode

tric  relaxation time, |;=€eEr/(eNp)~0.276um,

[1/(moER)~1.02 ps, respectivelyu is the zero-field elec-
tron mobility; see, e.g., Refl9] for detaily. The unit of
electric potential i€gl,~0.011 V. The carrier drift velocity

r>r., J<r holds. This means thaE~E(J/r)~J/r<1
andv(E)~E.

Whenv =0, the pulses move slowly over large regions
of the sample in which the field is stationary and sméll,

of Eq. (3), v(E), is already written in dimensionless units, <1. Notice thatov(E)=E—ES/(1+E%), which implies

and it has been depicted in Fig. 1 of Rgf]. We assume that
the diffusion coefficient is constanf~0.013 (at 20 K). In

v(E) to be approximately linear on a wide range of field
values,E®<1. We conclude thab(E)~E except near the

the rest of the paper, we assume also a zero saturation velogontacts and inside pulses. In these outer regions, space and

ity vs=0.

Boundary and bias conditions need to be imposed at th

interfaces between semiconductor and contagtg,, and on
the outer boundary of the semiconductor boundggy Our

boundary condition$4) and(5) assume that the normal com-
ponents of electron current density and electric field are pro-

portional at the semiconductor-contact bounda@hm'’s

law) [9], (in these equations\ is the unit normal ta 4,
directed towards the semicondudtoi~or simplicity, we
choose all contact resistivitigsto be equal. Bias conditions
are chosen to be=0 at the cathod&. (injecting contact
and ¢=® (the applied voltageat the anode, (receiving

time derivatives can be neglected in Ed), which implies
f~0v(E)~E there. Thus, diy=0 yields V2¢=0 and the
electric potentialp is a harmonic function outside pulses and
contact regions:
V2p=0. (8

Let us now consider the pulse interior. A pulse is a narrow
region of high electric field bounded by a leading front and a
trailing front which is a shock wave. Outside the pulse
<1 as explained before. The leading front is a region at
whichn=1+V-E~0. Since we are describing the pulse far

contac}. If part of the semiconductor boundary does notfrom the contactst>r. >1, the electric field is essentially
have attached contacts, the corresponding boundary condisrmal to the pulseﬂ Then EN=I§-N~r (t)—r, wherer
th w H

tions are zero flux ones, as in E§). Typically >0 is very

measures displacement along the normal to the front and

small, so that diffusion matters only inside boundary Iayersrw(t) yields the front location. The velocity of the leading

near the contacts or inside thin shock wap@&40]. The latter

are charge accumulations that will be treated simply as di

continuities of the electric field9]. Thus, diffusion effects
may be left out of the conservation equatidn» when inter-

preting the results. If we set=0, the first boundary condi-
tion in Eq. (5) and the second one in E@6) should be

omitted.

S

front isdr,/dt=jy=]-N, according to Eq(7). The back of
a triangular pulse of heigh&, —E_) (the trailing fronj is a
shock wave with speed given by the equal area L8,

1 E,
V(E+,E_)=E+_—EL v(E)dE~ (9)

4E,°
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where we have used th&t_ ~E; [13] asE,>1. Then the

B T S >
trailing front velocity is small and small waves move faster (N-Vp),=———==(N-Vo)_,
than large ones. A key observation is that the puls&isow 4V2[ ¢]

and it can be substituted by a curve on a length scale of the L. R
order of the distance between contadts,This is clear if ~Where N= VW/[VW|. Furthermore, the FB obeys the follow-

leading and trailing fronts of the pulse are circylat]. Then  ing HIE
the biasb =0(L) is the integral of the electric field from the

cathode to the anode and the pulse wigthual to its height _ ﬂvz 7| VW on W=0

is (E. —E_)=0(J®)<®. In the general case, the pulses at 4\2[ o]

are circular during a large part of their livEg| and we shall

assume that their widths remain much smaller thaeven The conditions on the normal derivative of the electric

when their shapes are no longer circular. Then we assurrotential at the FB are equivalent to

that the pulses are curvésgiven by the equation
> T

" VW L
W(x,t)=0. (10) (V<P'VW)+—F\/W—(V¢~VW),

Clearly, there is a finite voltage drop across the pulseyny \w=0.
~E?%/2=0(®), which means that the electric potential has  Tpe HJE(14) can be solved by the method of character-

a jump discontinuity af’: istics (the Hamilton equationsTo derive them, we just take

2 a partial derivative of the HJE with respectxtoand a partial

< o .

- =[o]=¢,—0_. (11) derivative with respect tg. The results are
R 3 IW ™ AW G*>W LW 9*W
Here, ¢~ and ¢, are the limiting values ofp as x ap- It Ix = el ax 2 | av Ixay
proached’ from the region inside or outside, respectively. AVWIV2L¢] y y
The relations divjﬁ=0 andfwé imply that the normal com- T ] -
ponent of the electric fielgand therefore the normal deriva- = m o W,
@

tive of the electric potentialis continuous acrosk:

and a similar equation fo#W/dy. The corresponding char-

acteristic equations for these first-order quasilinear partial
This jy is also the velocity of the leading front of the differential equations fop=¢W/dx andq=dJW/dy are

pulse along its normal, which is nearly equal to that of the

in=(N-Vg),=(N-Vo)_. (12)

trailing front, V given by Eq.(9), during most of the pulse m
lifetime. The pulse velocity can also be obtained by differ- dx  4y2[¢]
entiating Eq.(10) with respect to time, A U
g Eq.(10) p dt~ JpZro?
AW . dx
E"‘ WE—O w
o dy  4v2[e]
Since N=VW/|VW|, the normal component of the pulse dt /p2+q2q’
velocity jy is
- d d
i I A 13 d_Ft):_ — Eﬁ]q’
at N W 13 82[¢]
Using Egs.(9), jy=V, and(13), we obtain the following %: T el
equation for the position of the FB: dt  8\2[¢]® s
AW 7|VW| WE =0 14 dw 0
-——= on W(x,t)=0. —=0.
N 42l ] dt
Thus we have posed the following FBP: In these equations,is arc length on the FB', and we have

The electric potentiak(x,t) is a harmonic function in- used thatd[ ¢]/ox=—q(d[¢]/ds)/p°+q” and d[¢]/dy
side and outside the FB, with boundary conditions (4), (5), =P(dl¢]/ds)/\p°+q~ on I'. These expressions can be
and (6) on the semiconductor boundaries. On the FB straightforwardly derived by using a local coordinate system

implicitly given by Wx,t)=0, ¢ has a jump discontinuity ©on I' with basis vectors N=VW/|VW| and T
[¢] and its normal derivative satisfies =(—dWI3y,dW/ax)/|VW]|. The jump[ ¢] depends only on
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the arc length orl” andt because it is defined only for IV. EXACT SOLUTIONS OF THE FREE-BOUNDARY

L > PROBLEM IN SIMPLE GEOMETRIES
(x,y) eI [these k,y) eI have zero projection ontN]. The

last equation folV follows from the chain rule, the Hamilton There are two simple geometries in which the FBP can be
equations foix andy, and the HJE: solved exactly: parallel planar contacts attached at the ends
of a rectangular sampld.D cas¢ and the Corbino geometry
of two concentric circular contacts with the sample in be-

AW W dWdx Wdy aw w|€W| tw_egn(axisymmetric caselet us call region A the one com-
TG St A =0. prising the cathode and region B the one comprising the
dt gt ox dt  dy dt gt 42[¢] anode.

A. 1D geometry
The characteristic equations can be used to Wif{d,y,t)

given an initial conditionV(Xxg,Yq,0)=Wy(Xg,Yo) such that
the FB is described initially byVy(Xq,Yo)=0. Let us as-
sume thaf ¢] is a known function of andt. In principle, we
can find the solutions of the above equations with initial data ,2 A PPN

X=Xg, Y=VYo, P=3IWy/dXq andq=dW,/dyy. The result is &?:0 in (0Xs), @a(0t)=0, W(xs,t):

Then the electric potential depends only on the coordinate
X, the cathode is located at=0, the anode at=L, and the
FB is a moving poinixg(t). The electric potential obeys

a two-parameter family of solutionx=X(t;Xq,Yo), ¥ 42l e]
=Y(t;Xg,Yp). Let us assume that we can invert this trans- 2

f(_)rmation for eacht>0 (which should be true fot _suffi- ‘PZB: in (xe,L), o@g(L,t)=,
ciently smal), xo=£(x,y,t), Yo=7(X,y,t). The solution of IX

the HJE isW(x,y,t)=Wy(é(x,y,t), n(x,y,t)) becausew is

constant over the characteristics. OWeés found for a given

[¢], the Laplace equation can be solved for the electric po-

tential in the different regions of the sample separated by the

FB W=0. Inserting these solutions in the definition of the The solutions are

jump [¢], we find an equation for this jump. It seems clear

that we can implement this procedure numerically to device T

an explicit method such tha and[ ¢] are calculated at time ealx,t)= mei

t+ At knowing their values at time In particular, we do not ¢

need to find Xq,Yo) in terms of &,y,t). All we need to

know is the instantaneous location of the BB=0, thus, we -

. qDB(Xlt)

only need to know the evolution of those(y,) that are on 42[ ¢]

W;,=0. For eacht>0, the locus of suckk=X(t;Xq,Yo), ¥

=Y(t;x0,Yo) constitutes the FB. More details on the numeri- The jump in the potential, o] = @g(Xs,t) = @a(Xs,t) is in-

cal implementation of these ideas are given in Sec. V. dependent of andxs, and it solves the following equation:
The FBP describes the motion of a pulse far from contacts

and other boundaries or pulses. To obtain a complete ™

asymptotic description of the Gunn self-oscillations, we have [e]=®— F/ﬁ'-'

to supplement its solution with a local description of the field ¢

near _the contacts_ and boundaries and a description of p“'%’ettingaz \/m and ¢=®/L, we obtain

collisions. In particular, new pulses are shed from the cath-

odes as the normal component of the current density there -

surpasses a critical valug. which is the same as in the a3=<¢a— —)L. (15

axisymmetric casgll]. There are cases in which two pulses 42

collide and merge and cases in which a pulse spfitsin . ) .

these cases, our construction of the moving FB breaks dowfp€Pending on the values ¢f andL this equation may have

What do we do then? Consider, for instance, two circula€ro: one, or two positive solutions. If there are two solu-
pulses that become tangent at a poirg,{;) at time t; tions, an argument due to Volkov and Kogdd] shows that

>0. Clearly, there are two different initial points,y,) '€ Pulse with smallefe] is unstable. The FB(t) can be
that have evolved towardsx{,y;) and W(x,y,t) is no found by solving the dynamical HJE:

longer single-valued. Numerical simulations of the complete

system of equations show that the two pulses merge and _ ﬂ\/: 77
a_dopt_ an 8-_shaped form; see Fig. 7 of R&l. To mimi(_: this t 42 ]
situation with our FBP, we should stop the simulations and

start with a new FB at=t,, that is, an 8-shaped simple Let us assume that the initial profi&(x,0)=W;(x) is mo-
curve with a hole at the tangent point of the two old pulsesnotonously increasing and that it vanishes at a position
The new FBP should now have a unique solution. Xs(0) e (0,L) corresponding to the pulse location at tirhe

dep
—— (X e
ox Xsit)

WN2le]

™

(x—L)+ .

JW
x|
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FIG. 1. The solid lines indicate the electric potential and field of
an advancing 1D pulsgar from the contaciscalculated by numeri-
cally solving the Kroemer model. They agree very well with the
approximationspa(x,t) and ¢g(x,t) (dashed lines We have used
the nondimensional units defined in the text.

=0. For small enough we then have/W/dx>0 and we can

ignore the absolute value in the previous equation. Its solu-

tion is then

t

X— ——

MZM)'

Notice that we haveW/dx>0 for all t>0. SinceW(xg,t)
=0, the previous solution yields

W(X,t) :WO

t. (16)

a
(1) =x(0) + ———
Xs(1) =xs(0) 4 2le]

Figure 1 compares(X,t) and ¢g(x,t) to the electric

potential of an advancing pulse calculated by numerically

solving the exact system of equations.

The FBP has yielded the same approximation to the com-

plete 1D problem as indicated in R§®] for the motion of a

pulse far from the boundaries. When the pulse arrives at th

anodex=L, it starts disappearing there and the current den
sity increases until it surpassgs. Then a new pulse is shed
atx=0; see Ref[9] for detalils.

B. Corbino geometry (axisymmetric case

The potential depends only on the radiumeasured from

PHYSICAL REVIEW E 67, 036202 (2003

FIG. 2. Density plots of the solution of the Kroemer’s model
(with vs=0) in a square of sidé=20 with four circular contacts
forming the vertices of a square of side-4 located at the center of
the sample. Cathodes have potentigq=0 and anodes have
=10. Our dimensionless units have been defined in Sec. Il.

[o]= Tl | re+L
= — n s
VAT RS
or equivalently
5 g T | (rC+L a
a’=Pa— ——=In|——|r
a2\ re )0

for a=\[¢]. Notice thatr s explicitly appears in these equa-
tions and thatf ¢| decreases as the pulse advan¢asd
thereforer ¢ increasef cf. Ref.[11]. The HJE can be solved
as in the 1D case and its solution yields

_ A .Y
fs(t)—fs(0)+4\/§f0[90] “dt. (18)

g1 this case, Eq917) and(18) for [ ¢] andr¢(t) need to be
solved simultaneously.

The stage of a self-oscillation described by the previous
FBP corresponds to having a single pulse far from the con-
tacts. See Ref.11] for a full description of self-oscillations
in this case.

V. NUMERICAL RESULTS

the center of the cathode. Solving the Laplace equation

dlr deldr]lor=0 at both sides of the moving pulse of ra-
diusr(t), we find
r
In(—),
r.C
Tl

r
@B(rit):4\/m rC+L)+(I)

The jump in the electric potential at is now given by the
following equation:

mrg

(PA(H)ZF\/W

In

To test our FBP formulation, we shall consider the rela-
tively complicated geometry of Fig. 7 in R¢f] (reproduced
here as Fig. 2 to facilitate comparison with the results of
numerically solving the FBPcorresponding ta;=0. The
sample is a square of side- 20 with two cathodes at poten-
tial =0 and two anodes witlp=10. The circular contacts
(of radii 0.5 are at the vertices of a square of side-4
located at the center of the sample. Then the separation be-
tween contacts ik =3 and the distance from contacts to the
border of the sample is 7.5. Notice that dipole waves are
emitted from the cathodes. Immediately after their emission,
the waves are circular. As they approach each other, the

036202-5
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FIG. 3. Time evolution of the FBblack curve separating the
two regions of the sample, insidelear gray and outside(dark
gray) the boundary. The anodes appear in white.

Velocity

0.32

0.3
0.28
0.26
0.24
0.22

0.2
16

FIG. 5. Dimensionless velocity of each point of the FB at the
dimensionless time corresponding to the last frame in Fig. 3 and
calculated from the electric potential distribution showed in Fig. 4.

a
waves become elongated and merge forming an 8-shaped V= el
connected curve that grows until it reaches the anodes. 42[¢]
A. Free-boundary problem Figure 5 depicts the velocity of the points at the FB in the

We shall now explain the results obtained by solving nu-last frame of Fig. 3. The curve is symmetric and Fig. 5 shows
merically the FBP. Details of the numerical method will be that the FB moves faster at the points located in the left-
given later. Figure 3 shows the evolution of the FB separatupper and right-lower corners of the sample, in agreement
ing the two regions of the sample, inside and outside thavith the numerical solution of the Kroemer model.
boundary. Notice that the numerical solution of the FBP Lett; be the time at which two dipole waves created at
closely resembles the numerical solution of the full Kroemerthe cathodes touch at a poiats in the third frame of Fig.)3
model depicted in Fig. 2. In the two first frames of Fig. 3, thecounted from the time at which dipole waves are emitted at
FB consists of two circumferences corresponding to the dithe cathodest&0). The velocity of the points at the FB is
pole waves nucleated at the cathodes. In the third frame, thehown at three different times in Figs. 6<€@<t;) and Fig.
curves collide and then merge forming an 8-shaped closed (t>t;). Notice that the velocity of the points near the
curve as shown in the remaining frames of Fig. 3. Figure 4&enter of the sample in Fig. 6 is larger than in neighboring
shows the electric potential distribution in each region  points, which explains the elongated form of the dipole
side and outside the BRorresponding to the last frame of waves in the numerical solution of the Kroemer motksle

Fig. 3. the third and fourth images of Fig).2n Fig. 7 we observe
By using Eq.(9), we see that each point of the FB movesthat the largest velocity is reached at the outer points of the
with velocity single FB, also in agreement with the numerical solution of
the full model equations.
10
8 Velocity
0.21 -
6 0.205 |
0.2
4
0.195
2r N 0.19
N S
20 ’ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 16
y 0
FIG. 4. 3D plot of the electric potential surfaces(x,y,t) FIG. 6. Time evolution(from bottom to top of the velocity of

(lower surface, inside the BBand og(x,y,t) (upper surface, outside the FBT whent<t;, where the topology is composed of three
the FB at the time corresponding to the last frame of Fig. 3. Ourdomains and" is made of two circumferences. Our dimensionless
dimensionless units have been defined in Sec. Il. units have been defined in Sec. Il.
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Velocity

0.32

0.3
0.28
0.26
0.24
0.22

0.2
16

FIG. 8. The FB comprises two separate curves defining three

FIG. 7. Time evolution(from bottom to top of the velocity of ~ regions.
the FBT" whent>t,. The topology is now composed of two do-

mains. given initial configuration. To find an equation for we take
the gradient ofV(x,T(x))=0, VW+W,VT=0, and use Eq.
B. Numerical solution of the free-boundary problem (19) to obtain
To solve numerically the FBP, we should solve the partial VW— F|ﬁW|€T=O. (20)

differential equation governing the time evolution of the FB,

taking into account that the velocity thereof is determined byyp;s equation implies thaf W and % T are collinear vectors

the solution of Laplace’s equation with Neumann boundary, . S S >
conditions on the FB and Dirichlet boundary conditions atand their lengths are related by W| =F|VW[[VT]|. Then

; : ; we obtain the following eikonal equation far
the contactgthe electric potential problem, or, briefly, the g g

EPP.

I 1 4.2
At each time step, the FB advances at a constant velocity IVT(X)|=—= Eﬂ. (21
for a short distance from its previous positioffhus we (X) &

ignore the velocity variation during the short time interval ) ) . _

betweert; andt; + At.) At time t; + At, we solve the EPP in The velo_(:ltyF as a fun_ctlon ok is evaluated at timé& Once

the different domains resulting from the new location of theth® solution of Eq(21) is known at a narrow band about the

FB. This yields the electric potential distribution that is usedinStantaneous location of the FB at tinte the location

to calculate the velocity of the FB at the next time step. ~ thereof at timet+ At is found by solvingT(x) =t+At.
The time evolution of the free-boundary is calculated by ~The fast marching method consists of solving numerically

using the so-called fast marching meth@dspecial case of this equation by using upwind finite differences to approxi-

the method of level setsThis method was introduced by mate|VT|. In particular, we have used the Godunov scheme

Sethian in 19915] and used in a wide variety of applica- 5

tions[16—18. Level sets methods are very efficient for solv- a>{ Tii=Ticgj Tij—Tisa 0)

ing complex problems of evolving interfaces whose topology AX ' AX '

may change. If the velocity of the interface does not change

sign, the fast marching method is a very fast algorithm in- T=Tijo1 Tij=Tije1 2 1
+ma . 0O =—
The general version of the method of level sets consists of bl
solving the evolution equation (22

- This choice ensures that the information is always taken
ot F[VW|=0, (19 from where the solution is already known. The fast marching
method is consistent with the Huygens principle even when
two waves collide and adopt an 8-shaped curve as in Fig. 2,
or with even more complex topologies. The EPP is solved by

where W(x,t) is a function such thaw=0 describes the using an integral equation method based upon Green’s for-

free-boundary moving at velocity; cf. Eq. (14). When the mula. This yields the solutiog within a region for a given

sign of F does not change, the FB either expands or Contractay e of its normal derivative at each point of the boundary.

uniformly as time elapses. In our case, the FB MOVES aWay, make sure that the nonlinear boundary conditions at the
from the cathodes. Then the zero-level ¥&+0 comprises FE hold, we implement an iterative process

the points farthest from the cathodes that have been traverse We shall start our simulation from an initial configuration

once by the FB at a given instant of time. Then we can defin%s depicted in Fig. 8. There two waves have been nucleated
anarrival time function T in the whole sampleT(x) is the gt the cathodes and have reached their typical circular form.
time taken by the FB to arrive at the poitstarting from a The FB consists of two circumferences that divide the
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we only need to solve the Eikonal equation in a narrow band
ahead of the FB at each time step. On the other hand, the
EPP solver carries o@(N?+ M) operations, wher# is the
number of points defining the F&at most of ordeiN).

VI. CONCLUSIONS

We have studied Gunn oscillations in 2D rectangular
samples ofn-GaAs with circular contacts by solving the
Kroemer drift-diffusion model with appropriate boundary
and initial conditions. By using singular perturbation meth-
ods, the motion of dipole waves in semiconductor samples

FIG. 9. The FB is a single curve defining two regions. has been reduced to solving a free-boundary problem. Exact

solutions of this problem have been found in simple 1D and

sample in three regiong\,, A,, andB, in which we should axisymmetrical(Corbing geometries. In the general case,
simultaneously solve the EPP. Implementing the fast marchthe free-boundary is numerically found by means of the fast
ing method, we see two waves growing from the initial cir- marching method which is a special case of the method of
cumferences until a timg, when they meet at the center of level sets. The great reduction in computational cost allowed
the sample. Then the FB is a connected curve and we hayy using this method as an alternative to solving the full
the situation depicted in Fig. 9, where there are only twoKroemer model would enable us to study much larger
regionsA and B. The algorithm detects the tintg, adapts Samples.
itself immediately to the new configuration similar to Fig. 9
and it continues solving the FBP. ACKNOWLEDGMENTS
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